morphological$50422$ - перевод на греческий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

morphological$50422$ - перевод на греческий

THEORY AND TECHNIQUE FOR THE ANALYSIS AND PROCESSING OF GEOMETRICAL STRUCTURES
Morphological image processing; Morphological Image Processing; Mathematical Morphology; Morphological operations
  • The closing of the dark-blue shape (union of two squares) by a disk, resulting in the union of the dark-blue shape and the light-blue areas.
  • The dilation of the dark-blue square by a disk, resulting in the light-blue square with rounded corners.
  • A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element.
  • The erosion of the dark-blue square by a disk, resulting in the light-blue square.
  • The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners.
  • Watershed of the gradient of the cardiac image

morphological      
adj. μορφολογικός

Определение

Morphologist
·noun One who is versed in the science of morphology.

Википедия

Mathematical morphology

Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it can be employed as well on graphs, surface meshes, solids, and many other spatial structures.

Topological and geometrical continuous-space concepts such as size, shape, convexity, connectivity, and geodesic distance, were introduced by MM on both continuous and discrete spaces. MM is also the foundation of morphological image processing, which consists of a set of operators that transform images according to the above characterizations.

The basic morphological operators are erosion, dilation, opening and closing.

MM was originally developed for binary images, and was later extended to grayscale functions and images. The subsequent generalization to complete lattices is widely accepted today as MM's theoretical foundation.